Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhifang Yu,* Zhimin Zhao, Juan Li and Guang Ju

Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: zfyu@tju.edu.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.053$
$w R$ factor $=0.132$
Data-to-parameter ratio $=14.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3-(2,4-Dichlorophenyl)-N,N-diethyl-3-(4methylphenylsulfonylamino)propanamide

The S atom of the sulfonyl group in the title compound, $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$, has a distorted tetrahedral geometry. Two intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the amino groups and the carbonyl groups link the molecules into a centrosymmetric dimer.

Comment

The addition of a nucleophile to unsaturated carbon-nitrogen bonds is a convenient method of synthesizing amine derivatives (Kobayashi \& Ishitani, 1999). In our laboratory, we have recently investigated a new metal-mediated reaction for the preparation of β-sulfonylaminoamides. The title compound, (I), has been synthesized by the reaction of N-(2,4 -dichloro-benzylidene)-4-methylbenzenesulfonamide and 2-bromoN, N-diethylacetamide in the presence of zinc powder.

(I)

The molecular structure of (I) and the atom-numbering scheme are shown in Fig. 1. In this structure, the benzene ring attached to the sulfonyl group makes a dihedral angle of 11.7 (3) ${ }^{\circ}$ with the dichlorophenyl ring. The S atom has a distorted tetrahedral geometry, with the $\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$ and $\mathrm{O} 2-\mathrm{S} 1-\mathrm{N} 1$ angles (Table 1) deviating most from the regular tetrahedral value. Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are formed between the amino groups and the carbonyl groups of two molecules, forming a centrosymmetric dimer.

Experimental

The title compound was synthesized by adding 2 -bromo- N, N diethylacetamide $(3.0 \mathrm{mmol})$ to a solution of N-(2,4-dichlorobenzyl-idene)-4-methylbenzenesulfonamide (1.0 mmol) in dichloromethane $(5.0 \mathrm{ml})$. Zinc powder $(6.0 \mathrm{mmol})$ and a trace amount of iodine were added to the mixture. After the mixture had been refluxed for 6 h , the reaction was quenched with a saturated solution of ammonium chloride (8.0 ml). The mixture was extracted with dichloromethane, evaporated and separated by flash chromatography (using ethyl acetate-petroleum ether). A white powder (yield 64%) was obtained. Slow evaporation of a dichloromethane-petroleum ether (1:7) solution afforded the title compound as single crystals.

Received 2 June 2006
Accepted 12 June 2006

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$
$M_{r}=443.38$
Triclinic, $P \overline{1}$
$a=7.895$ (3) \AA
$b=10.704$ (4) \AA
$c=14.046$ (4) \AA
$\alpha=105.881(5)^{\circ}$
$\beta=100.025$ (4) ${ }^{\circ}$
$\gamma=99.190(4)^{\circ}$

Data collection
Bruker SMART CCD area-detector
diffractometer diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.896, T_{\text {max }}=0.944$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.132$
$S=1.06$
3833 reflections
258 parameters
H atoms treated by a mixture of independent and constrained refinement
$V=1097.0(7) \AA^{3}$
$Z=2$
$D_{x}=1.342 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.41 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colourless $0.36 \times 0.22 \times 0.14 \mathrm{~mm}$

5569 measured reflections 3833 independent reflections 3131 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.016$
$\theta_{\text {max }}=25.0^{\circ}$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0549 P)^{2}\right. \\
&+0.8034 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.60 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.71 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

S1-O2	$1.426(2)$	$\mathrm{S} 1-\mathrm{N} 1$	$1.606(2)$
S1-O1	$1.427(2)$	$\mathrm{S} 1-\mathrm{C} 8$	$1.766(3)$
O2-S1-O1	$120.48(15)$	$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 8$	$107.45(13)$
O2-S1-N1	$105.55(14)$	$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 8$	$107.80(14)$
O1-S1-N1	$107.42(13)$	$\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 8$	$107.55(12)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{OB}^{\mathrm{i}}$	$0.79(3)$	$2.04(3)$	$2.806(3)$	$166(3)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.

All carbon-bound H atoms were positioned geometrically and refined as riding $(\mathrm{C}-\mathrm{H}=0.93-0.98 \AA)$, with $U_{\text {iso }}(\mathrm{H})$ set at $1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\mathrm{eq}}$ (methyl C). The coordinates of atom H 1 were refined. Methyl groups C14 and C18 were allowed to rotate but not to tip.

Figure 1
View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity.

Figure 2
View of the molecular structure of (I). Dashed lines indicate $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Bruker (1997). SMART, SAINT and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Kobayashi, S. \& Ishitani, H. (1999). Chem. Rev. 99, 1069-1094.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

